
J .  Pluid dfech.  (1976), voE. 69, part 4, pp.  705-719 

Printed in Great Britain 
705 

Viscous incompressible flow between concentric 
rotating spheres. Part 3. Linear stability 

and experiments 
By B. R. M U N S O N  

DeparLmeiit of Engineering Science and Mechanics, Engineering Research Institute, 
Iowa State University, Ames 

A N D  M. MENGUTURK 
Department of Mechanical Engineering, Duke University, 

Durham. North Carolina 

(Received 26 June 1974) 

The stability of flow of a viscous incompressible fluid contained between a 
stationary outer sphere and rotating inner sphere is studied theoretically and 
experimentally. Previous theoretical results concerning the basic laminar flow 
(part I )  are compared with experimental results. Small and large Reynolds 
number results are compared with Stokes-flow and boundary-layer solutions. 
The effect of the radius ratio of the two spheres is demonstrated. A linearized 
theory of stability for the laminar flow is formulated in terms of toroidal and 
poloidal potentials; the differential equations governing these potentials are 
integrated numerically. It is found that the flow is subcritically unstable and that 
the observed instability occurs a t  a Reynolds number close to the critical value of 
the energy stability theory. Observations of other flow transitions, a t  higher 
values of the Reynolds number, are also described. The character of the stability 
of the spherical annulus flow is found to be strongly dependent on the radius ratio. 

1. Introduction 
We consider here the flow of a viscous incompressible fluid contained between 

concentric spherical surfaces. The inner sphere rotates a t  a constant angular 
velocity within the stationary outer spherical surface. I n  particular, we consider 
the instability of the basic laminar flow from the standpoint of linear stability 
theory and present various experimental results regarding this flow. The basic 
laminar flow for the spherical annulus geometry shown in figure 1 is discussed in 
part 1 (Munson & Joseph 1971 a )  and the stability of this motion from the stand- 
point of the energy stability theory is discussed in part 3 (Munson & Joseph 
1971 b).  

The linear stability problem for the basic flow of part 1 is considered here and 
a critical Reynolds number Re, is determined. When Re > Re,, the basic flow 
is unstable. The Reynolds number is defined as Re = Q,Ri/v, where R, is the 
radius of the outer sphere, Q, is the angular velocity of the inner sphere and v is 
the kinematic viscosity of the fluid. The linear-theory results are compared with 
the energy-theory results of part 2 .  Experimental results are compared with the 
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1 

FIGURE 1. Spherical annulus geometry. q = R,/R,. 

theoretical stability results as well as with various theoretical results concerning 
the basic laminar flow. 

Others have carried out both theoretical and experimental investigations of 
flow in a spherical annulus. There are some results for narrow-gap geometry 
(7 = R,/R, z I) ,  but results for wide-gap geometry (7 < l), which are more 
difficult to obtain, are sparse. 

Yakushin (1969, 1970), Khlebutin (1968) and Zierep & Sawatzki (1970) have 
carried out approximate linear stability calculations for the narrow-gap case and 
have done experiments verifying the theory. In  general, when the gap is narrow 
(7 1) the first instability occurs as Taylor-type vortices in the region near the 
equator with other more complex transitions occurring a t  larger Reynolds 
numbers. Sawatzki & Zierep (1970) and Morales-Gomez (1974) present photo- 
graphs of these instabilities as well as various other flow modes for sufficiently 
large Reynolds numbers. 

On the other hand, Bratukhin (1961) obtained an approximate linear stability 
limit for wide-gap spherical annulus flow (7 = 0.5) by using the Stokes-flow 
approximation as the basic laminar flow. This approximation is valid only for 
sufficiently small Re (part 1). He found that Re, z 400. We shall show that, if the 
proper basic flow is considered, a more accurate theoretical result with 7 = 0.5 
is R, z 1300. Sorokin, Khlebutin & Shaidurov (1966) attempted to verify experi- 
mentally Bratukhin’s result for 7 = 0.5 but were unable to  observe transitions 
indicating instability. A similar lack of any evidence of instability in the flow in 
a wide-gap spherical annulus was obtained by Khlebutin (1968) for 7 < 0.7. The 
accurate experimental results for 7 = 0-44 in the current study show that the 
first instability is subcritical. That is, the flow is unstable for Re < Re,. 
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The basic laminar flow in a spherical annulus is a function of two spatial 
variables, r and 8, and in non-dimensional form is strongly dependent on the 
Reynolds number (see part 1). This Reynolds number dependence makes the 
study of flow between spheres different from, and possibly more typical of the 
general situation than, conventional problems like Poiseuille or Couette flow, 
which are independent of Reynolds number. 

2. Formulation of linear stability theory 
We consider the linear stability of the basic laminar flow in the spherical 

annulus. We superpose infinitesimal disturbances on the basic laminar flow and 
seek the conditions under which these small disturbances grow (unstable) or die 
out (stable). Thus, linear theory provides a critical Reynolds number Re, such 
that if Re > Re, the flow is definitely unstable. On the other hand, energy theory 
provides a critical Reynolds number Re, such that if Re < Re, the flow is 
definitely stable (to large or small disturbances). That is, energy theory gives 
sufficient conditions for stability and linear theory gives sufficient conditions 
for instability. Necessarily Re, 6 ReL, with the stability of the flow for 
Re, < Re < Re, unknown. If the flow is unstable for Reynolds numbers in this 
range (sublinear or subcritical instability), it follows that the disturbances 
causing the instability must be of finite size. 

The linear theory starts with the linearized Navier-Stokes equations, which 
may be written as 

( 1 )  
&/at + u. V U  + U . V u  = - Vp + Re-lV2u, 

V . U =  O in V,  

with boundary conditions u = 0 on a?+'-. (2) 

Here u is the arbitrary infinitesimal disturbance, 9'- is the volume occupied by 
the fluid (7 6 r < 1,  0 < 8 < n, 0 < q5 < 27r) and a-lr the boundary of V.  The 
equations are in dimensionless form; R, is the characteristic length and d ,  is the 
characteristic angular velocity. The basic laminar flow U = (V,, Ue, U,), consisting 
of the primary flow (given by U& and the secondary flow (given by U,, Ue), may 
be written as (see part 1) 

U, = ( a$/ae)/r2 sin 8, U, = ( - a@/ar)/r sin 8, U, = O/r sin 8, 

where d ( r ,  8) = 2 sin2 8P,(8)fs(r), $(r, 8) = sin2 8 pS(8) gs(r). (3) 
S S 

Here P, = Ps(@ is the Legendre polynomial of order s, a prime indicates dldr and 
a dot indicates d/d8. The component functions f s ( r )  and gs(r) are obtained in 
part 1 by either a high-order perturbation solution or by a numerical integration. 
The number of functions needed to describe the basic flow accurately depends 
on the Reynolds number. 

The problem, therefore, is to determine the critical value Re, for (1) and (2) 
using the basic flow given by (3). The stability analysis is made difficult by the 
following facts. First, because the basic flow is a function of two spatial co- 
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ordinates ( r  and e) ,  the governing eigenvalue problem consists of partial differ- 
ential equations. (For simpler problems the basic flow is a function of one 
co-ordinate and the governing equations can be reduced to ordinary differential 
equations.) Second, because of the nonlinear terms in the Navier-Stokes equa- 
tions, the basic flow cannot be determined exactly but is known only as a series 
approximation as in (3). Thus the linear stability problem is solved using an 
appropriate series representation and numerical integration. A similar technique 
was used for the energy theory in part 2. 

Although the physical interpretations and origins of the linear- and energy- 
theory stability problems are entirely different, the structures of the governing 
eigenvalue problem for each are superficially similar. Hence, the method used 
to solve for Re, in part 2 is extended and used to solve for Re,. This procedure is 
outlined briefly below. 

The time dependence of the disturbances can be separated from their spatial 
dependence by using u(r,t)  = u(r)e-At. The idea is to determine the lowest 
Reynolds number of the basic flow such that the real part of h is zero (neutral 
disturbances). Any solenoidal vector u can be written in terms of its toroidal and 
poloidal components T and S, respectively, as u = T + S, where T and S are 
defined by their generating scalars Y and @ as 

T = curl (V'r/r), S = curl [curl (@r/r)] (4) 

(see part 2 ;  Chandrasekhar 1961, p. 622). These generating scalars can then be 
expanded in terms of spherical harmonics Yf'(0, q5), with the resulting representa- 
tion for the arbitrary disturbances u 

( 5 )  

The component functions Ty(r)  and X?(T) of the disturbance flow must be such 
that the disturbance given by ( 5 )  satisfies the eigenvalue problem ( 1 )  with ( 2 ) .  
It is necessary, of course, to truncate the series representation at  some appropriate 
value E = L,. 

The systems of equations governing Ty(r)  and Sr(r)  are obtained as indicated 
below. Details are given by Nenguturk (1974). We substitute the toroidal- 
poloidal representation (5) into the linearized Navier-Stokes equations (I) ,  
multiply by appropriate toroidal-poloidal functions whose scalar generators are 
unity and integrate over the unit sphere. After use of various orthogonality 
properties of toroidal-poloidal vectors and considerable algebra, the governing 
equations may be written in the following form: 

L,2_,Tcl - ReAyX[G4iYF:, + G , X ~ ~ l + G , S ~ - 1 + G r 5 T ~ ~ L L 1 + G 3 T ~ - 1 1  = 0, 

L&-, S c ,  - Re A? E[H6 8F!', + HIS::, + H, SELl + H3 SF-,+ H7 TFC, } (6) 

+H4T:!-1 +&TE-J = 0, 

where L;-, = d2/dr2 - Z(1- I)/+. The structures of these equations and the energy 
equations of part 2 are similar. Here the various coefficients Gj = Gjd and 
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Hi = Hjlnl are functions of the component functions f ,  and g, of the basic flow: 

1 1 
G 1 - - V  - ,/.2 cl a1 f q - 1 7  '2 = 2 (a2f~-1+ia3g~-1)7 (7% b )  

S 

1 1 1 
G3 = p ~ ~ ( i a 4 f s - l + a 5 g : - l ) - c c 6 h r 2 1 ~  G4 = ?ia7gs-19 G5 = xa8gs-l? s 

(7  c-e) 

( 7 f  1 

1 1 
H6 = 2 3 p27g.s-17 - - ip28gs-1' ( 7 A  k) 

s 
7 -  r 2 7  

The numerous coefficients aj = ajlsm and Pi = PjlSrIL are evaluated by Munson 
(1970) and Menguturk (1974) in terms of integrals of triple products of various 
spherical harmonics and their derivatives. The integers Nt and L, indicate the 
order of truncation for the basic flow series (3) and the disturbance flow series (5). 

The wavenumber m determines the symmetry of the disturbances about the 
axis of rotation and affects the character of the governing equations. For example, 
with m = 0 (axisymmetric disturbances) and real values of h (exchange of 
stability) the eigenvalue problem ( 1 )  with (2) is completely real. On the other 
hand, for In + 0 (non-axisymmetric disturbances) or A complex (oscillatory 
disturbances) the equations are complex and must be written in terms of real and 
imaginary parts. Only real values of h are considered in this study. 

The task is to determine the smallest value of Re for which A = 0. The pro- 
cedure is as follows. Given 7, select Re; this specifies the parameter Re in the 
governing equations as well as the component functions f ,  and g, of the basic 
flow, which are implicit functions of Re and 7. If axisymmetric disturbances are 
of interest, sn = 0, and the governing system is integrated numerically to obtain 
the minimum eigenvalue Re,. The first zero of the curve h = h(Re) defines the 
critical value Re,; h(Re,) = 0. Non-axisymmetrjc disturbances, m + 0, are 
treated in the same manner. 

It is rioted that the general disturbances represented by (5) and determined 
by the governing equations (6) can be considered as the sum of two separate 
types: disturbances symmetric or antisymmetric with respect to the equator. 
Mathematically this consists of using toroidal-poloidal components Ti and Sj 
with i odd a n d j  even or i even a n d j  odd. (A similar technique was used by 
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FIGURE 2. Linear-theory eigenvalue as a function of Reynolds number for 7 = 0.5: 
u = u(r) e-ht. - -, Bratukhin’s (1961) approximate result; - - -, this study with Stokes 
flow as basic flow; -, this study with accurate basic flow. 

Bratukhin (1961) for his approximate solution.) The minimum eigenvalue of the 
general problem is the minimum eigenvalue of these two separate problems. 

3. Linear-theory stability results 
Results of the linear stability analysis outlined above are discussed below for 

7 = 0.5. We compare the results of this research with other approximate results. 
As mentioned previously, Bratukhin (1961) obtained an approximate result for 
axisymmetric disturbances (m = 0) by using the Stokes-flow approximation as 
the basic flow and a perturbation technique (up to second-order terms in Re) for 
the stability problem. (It is noted that the difference between the actual basic 
flow and the Stokes-flow approximation becomes larger as Re increases; see 94.) 
The result of Bratukhin’s approximate stability analysis, shown in figure 2 as 
curve (a) ,  indicates that Re, z 400. This curve consists of two distinct segments 
given by h = min [150( 1 - .& Re)2, 43.3( 1 - & Re)2], corresponding to different 
modes of disturbance. 

A better, but not final, approximation to the critical Reynolds number Re, is 
obtained by solving the eigenvalue problem developed above with Stokes flow as 
the basic flow. This h = h(Re) curve, shown in figure 2 as curve ( b ) ,  yields a value 
of Re, of 630. It is noted that a seventh-order disturbance flow truncation, 
L, = 7 ,  provided sufficient convergence of the series shown in ( 5 ) .  

Curve (c) of figure 2 gives the stability characteristics when the correct basic 
flow is considered. The basic flow is represented by functionsfi and g, with 1 ,< 7 
and the disturbance flow is truncated a t  Nt = 7. It is seen that the value of Re, is 
increased from the values 400 and 630 for Stokes-flow approximations to 
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Re, z 1300 for the accurate representation of the basic flow. This curve (as well 
as curves (a )  and ( b ) )  consists of two distinct segments corresponding to different 
modes of disturbance. That is, the minimum eigenvalue does not correspond to 
the same disturbance mode for all Reynolds numbers. The dotted portion of the 
curve is an extrapolation to the value h = 0. This extrapolation is necessary since 
i t  was not possible to obtain the basic flow accurately for Re > 900. That is, as 
indicated in part 1, for large Re numerical difficulties were encountered in the 
integration of the system of nonlinear ordinary differential equations governing 
the basic flow. 

It is of interest to note that the disturbance flow corresponding to the critical 
Reynolds number (h(Re,) = 0 )  is not symmetric with respect to the equator. 
However, it is axisymmetric (m = 0). Thus, according to this linear theory, the 
disturbance flow is different from the basic flow in that there is a distinct flow 
between the northern and southern hemispheres. The disturbance flow according 
to  energy theory is also asymmetric with respect to the equator (part 2). I n  
addition, i t  is non-axisymmetric (ni -+ 0). Contrary to this, experimental results 
discussed below show no evidence of antisymmetric flow. 

The basic flow is a function of the Reynolds number. Hence the curves 
h = h(Re) for the Stokes basic flow are different from that for the accurate basic 
flow. For small Re, curves (b)  and ( c )  nearly coincide. However, as Re becomes 
larger the difference becomes significant. It is of interest to know what charac- 
teristics of the basic flow are responsible for this increased stability. 

To study the effects of separate parts of the basic flow, the stability of various 
pseudo basic flows was considered. For example, a pseudo basic flow consisting 
of the accurate primary motion (flow about the axis of rotation) and the approxi- 
mate Stokes secondary motion (flow in the meridian plane) was considered. 
Other combinations were also considered. The results can be summarized as 
follows. When the Reynolds number is increased, the streamlines of the secondary 
basic flow change their shape (see part 1) .  The centre of the secondary swirl moves 
closer to the equator (producing a greater jetting of the fluid from the equator of 
the inner sphere). This change causes the flow to become more unstable. On the 
other hand, the fact that as the Reynolds number is increased the angular- 
velocity contours of the primary flow deviate from spheres (which characterize 
level surfaces a t  low Reynolds number) causes the flow to become more stable. 
The net result of the changes in the character of the basic flow as the Reynolds 
number is increased is an increase in the stability of the flow (as shown by curves 
(b)  and ( c )  in figure 2) .  

A summary of the stability results for flow between a rotating inner sphere and 
a stationary concentric outer sphere is shown in figure 3. Both the linear and 
energy stability limits are shown as a function of radius ratio. The theoretical 
results for the small-gap situation (7 z 1) are those of Yakushin (1969), who used 
Stokes flow as the basic flow and a Galerkin-type solution of the stability problem. 
The large-gap results (7 = 0.5) are from the present study as well as Bratukhin’s 
perturbation solution. Energy-theory results for 7 = 0.5 and 0.75  are also shown 
(part 2).  The various experimental results shown in figure 3 are discussed in the 
next section. 
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FIGURE 3. Theoretical and experimental stability results for spherical aniiulus flow with 
stationary outer sphere. Linear theory: a, this study, accurate basic flow; 0, this study, 
Stokes flow; V,  Bratukhin (1961); o, Yakushin (1969). Energy theory: 0, Munson & 
Joseph (19716). Experiment: A, 0 ,  this study; 1, Khlebutin (1968); @, Sawatzki BE 
Zierep (1970). 

It is noted that for 7 z 1 the flow near the equator can be thought of as being 
similar to the flow between rotating cylinders. Thus, as mentioned by Khlebutin 
(1968), the stability results for narrow-gap spherical annulus flow are quite 
similar to those for narrow-gap Taylor flow (rotating cylinders). However, as the 
gap width increases, the correspondence between the spherical annulus and the 
cylindrical annulus vanishes. 

4. Experimental results 
The apparatus shown schematically in figure 4 was used to obtain experimental 

results regarding various aspects of the flow in a spherical annulus. These 
included torque measurements and results of flow-visualization experiments for 
a wide range of Reynolds numbers with radius ratios of 7 = 0-881 (narrow gap), 
0.440 (wide gap) and 0-304 (very wide gap). 

The main components of the experimental apparatus are ( b )  a clear outer 
spherical shell of diameter 12.95 0*05cm, (a) an inner sphere rotated by a 
variable-speed electric motor, (d )  a torsion wire from which the Plexiglas box 
containing the outer sphere is suspended, a means of measuring the angular 
rotation of the outer sphere (in order to determine the applied torque) and 
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FIGURE 4. Schematic diagram of experimental apparatus for spherical annulus flow. 
( a )  Rotating inner sphere. ( b )  Stat’ionary outer sphere. (c) Silicone oil. (d )  Torsion wire con- 
nected to outer sphere. ( e )  Plexiglas box. ( f )  Variable-speed motor. (9) Belt drive. (h)  Viscous 
damper. (i) Thermocouple. 

( i )  a thermocouple to measure the temperature of the fluid in the annulus. 
Silicone oils of various viscosities (10-1000 cS) were used as the fluid. Speed regu- 
lation of the inner sphere was excellent. Small random fluctuations in angular 
velocity ( ~f: 0-25 yo) produced noticeable changes in the torque. Data were not 
taken during such oscillations. In  order to reduce optical distortion, the region 
between the outside of the outer sphere and the Plexiglas box holding this sphere 
was filled with fluid also. Torques were determined by using a torsion wire of 
known spring constant. Flow visualization was carried out by using either 
aluminium flakes suspended in the fluid or dye injection. 

4.1. BusicJlow 

Flow-visualization studies confirmed that the basic flow was as given by the 
theoretical results of part 1 and others (Pearson 1967). Figures 5 and 6 (plates 
1 and 2) show typical streamlines for three radius ratios. The secondary flows are 
clearly visible. The streamlines were made visible by injecting a finite spot of 
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FIGURE 7. Torque as a function of Reynolds number for = 0.440 and outer sphere 
stationary. , experimental results; -, theoretical torque for basic laminar flow, Munson 
&Joseph ( 1 9 7 1 ~ ) .  

neutrally buoyant dye within the annulus and allowing it to be stretched out as 
the flow proceeded. It is seen that, a t  the low Reynolds numbers shown, the fluid 
makes many revolutions about the axis of rotation before completing one 
secondary flow circuit. 

The theoretical torque M needed to rotate the inner sphere was obtained in 
part 1. The dimensionless torque 

?%(Re, 7) = 311.1/(8rpQ1R,3) 

is a function of the Reynolds number. For small Re, when secondary flows are 
not important, 6 6  is independent of Re. For larger Reynolds numbers, when the 
secondary flow becomes important, the torque becomes larger than the limiting 
Stokes-flow value. Figure 7 (for 7 = 0.44) shows the good agreement between 
theory (Stokes-flow limit and larger Reynolds number basic flow solution of 
part 1) and experiment. 

The limiting case ? - t o  corresponds to the flow induced by the rotation of 
a single sphere in an unbounded fluid. It is of interest to determine the effect of 
a stationary outer bounding sphere of finite radius by considering the effect of 7. 
For this situation we redefine the Reynolds number so that 

Re = R: Qllv = q2 Re 
A 

and the dimensionless torque so that 

6i = M/pR,3 Ql = ( 8r/3n3) 7%. 

The low Reynolds number solution (Stokes flow, see part I) then gives 
& = 8n/( 1 - r3) as Re --f 0. The large Reynolds number solution (boundary layer) 
for the case 7 = 0 has been determined by Howarth (1954) as 4 = 3.38 Reg. This 
relationship between the torque and Reynolds number has been confirmed 
experimentally to within 10% by Bowden & Lord (1963). 

A 

A 
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FIGURE 8. Torque as a function of Reynolds number for different radius ratios. Experimental 
results: A ,  7 = 0.304; 0 ,  q = 0.440; m ,  7 = 0.881. Theory: --, Stokes flow, 7 = 0.304; 
-, Stokes flow, 7 = 0.440; ----, Stokes flow, 7 = 0.881; ---, boundary layer, 7 = 0,  
Howarth (1954). 

Experimental torque data for three different radius ratios are presented in 
figure 8 along with the theoretical results given above. It may be seen that for 
small enough Reynolds numbers the torque is independent of Re and is given 
very accurately by the Stokes-flow torque formula. For these low Reynolds 
numbers, the torque is a strong function of the radius ratio, provided that 7 is 
not near zero. 

It may be seen from figure 8 that the Reynolds number a t  which the character 
of the flow begins to deviate from that of Stokes flow is strongly dependent upon 
the radius ratio. For example, the dimensionless torque is constant for Re 5 900 

if 7 = 0.881, for Re 5 20 if 7 = 0.440 and for Re 5 7 if 7 = 0.304. As discussed 
below, the Reynolds number for transition of the basic laminar flow to another 
laminar flow or turbulence is also a strong function of 7. 

On the other hand, for large Re the dimensionless torque is essentially inde- 
pendent of 7, a t  least for the range of radius ratios considered in this study 
(0.304 6 7 < 0.881). Within this range of 7 the torque is given quite well by 
Howarth's 7 = 0 boundary-layer solution. Thus, for large Re the relatively thin 
boundary layer apparently determines the torque required to rotate the sphere 
quite independently of the radius of the stationary outer sphere (even for the 
narrow-gap situation with 7 = RJR, = 0.881). 

For a given inner sphere, angular velocity and fluid, it may be expected that 
the torque would increase if the gap size were made smaller (the outer-sphere 
radius reduced). Such is the case for small Re (& increases with 7 in the Stokes- 
flow limit). For large Re the torque is essentially independent of 7. However, for 
certain cases the torque may actually decrease as the gap size decreases. Such is 
the case for Re = lo3 with 7 = 0-440 or 0.881 (see figure 8). This characteristic 
results from the fact that the range of validity of the Stokes-flow condition 
increases rapidly with 7 and that the Reynolds number for transition (with the 
corresponding changes in torque characteristics) is also a function of 7. 

A 

A 

A A 

A 

A 

A 

A 

A 
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4.2. Xtability 

Sawatzki & Zierep (1970) and Khlebutin (1  968) presented torque data indicating 
various flow transitions for narrow-gap geometry (7 z 1). On the other hand, 
Sorokin et al. (1966) and Khlebutin (1968) were unable to detect any transitions 
(in either torque measurements or flow-visualization studies) for the wide-gap 
case (7 5 0-7). A summary of the various experimental stability results is shown 
in figure 3. We feel that the reason why break points (transitions) were not 
observed in wide-gap experiments prior to this one is that the character of the 
flow is strongly dependent on the radius ratio and the break is smaller when the 
gap is bigger. Hence very careful experiments were carried out. 

The results of narrow-gap experiments of this study (?I = 0.881) are very 
similar to those previously reported in the literature. In  particular, a series of 
transitions in the character of the flow was observed both visually, by using 
aluminium particles in the fluid, and from relatively large breaks in the torque 
curve & = %(Re). The initial instability takes place in the form of Taylor vortices 
near the equator, with various other transitions occurring for Reynolds numbers 
above the critical value. A discussion and photographs of these various transi- 
tions for the narrow-gap case are given by Sawatzki & Zierep (1970) and Morales- 
Gomez (1974). 

As mentioned above, other investigators were unsuccessful in observing any 
transitions in the flow for the wide-gap case. However, four break points (or 
transitions in the flow) were observed for the 7 = 0.440 case of the current study. 
The second one, occurring at Re = 540, is shown in figure 9. Although the change 
in the torque curve is not large, a definite change in slope is apparent. Careful 
experiments showed that the data were repeatable within the narrow range indi- 
cated in the figure and free of hysteresis. The first and third break points, occur- 
ring at  Re = 290 and Re = 900 for this radius ratio, produce similar torque 
characteristics. A fourth, and more pronounced, break occurred at  Re = 2100. 
At this Reynolds number the flow suddenly becomes turbulent. The four transi- 
tions described above are indicated in figure 3. 

According to energy stability theory (part 3 ) )  for 7 = 0.440 and the outer 
sphere stationary, flow in a spherical annulus is stable to any disturbances (large 
or small) if Re Re, = 310. (This value is obtained by an extrapolation from 
the known results for p = 0.5.) The close agreement between the critical value 
Re = 310 of energy theory and the first break point, Re = 290, is noteworthy. 
Since the linear theory indicates that Re, % 1300, it appears that transition from 
the basic laminar flow is subcritical and, therefore, is caused by disturbances of 
finite size under circumstances in which infinitesimal disturbances decay. 

Careful observations of the flow field by using aluminium flakes suspended in 
the fluid were made in order to observe the nature of the various transitions in 
the flow. As mentioned previously, other investigators observed various insta- 
bilities in the narrow-gap case, but did not observe any instabilities in the wide- 
gap case. In  this investigation, for p = 0.440 no instabilities were observed for 
Reynolds numbers encompassing the first break point in the torque curve. It is 
possible that the instabilities may occur in a form similar to the secondary motion 
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FIGURE 9. The second transition in the flow for 7 = 0.440 indicated by the break in the 
torque as a function of Reynolds number. Data repeatable within the band shown. 

of the basic flow and thus be indistinguishable from the basic flow, although they 
would produce the break in the torque curve. It is noted that the instabilities for 
Bratukhin’s (1961) approximate linear analysis are of this form. 

At the Reynolds number corresponding to the second break point (Re = 540 
for 7 = 0.44), an instability appears in the form of small spots or puffs of turbu- 
lence. These turbulent spots occur a t  the centre of the secondary basic flow swirl 
and rotate about the axis of rotation at a rate corresponding to the angular 
velocity of the primary flow a t  that location. At Reynolds numbers corresponding 
to the third break point, a slight waviness or unsteadiness is observed near the 
equator, This unsteadiness increases and spreads towards the poles as the 
Reynolds number is increased. Finally, for Reynolds numbers corresponding to 
the fourth break point (Re = 2100 for 7 = 0.44), the flow suddenly becomes coin- 
pletely turbulent. It is noted that for the first three break points the break in the 
dimensionless torque curve occurs as a decrease in 6, whereas the fourth break 
(transition to turbulence) occurs as an increase in A. It is also noted that the 
magnitudes of these breaks in the torque curve for this large-gap case are con- 
siderably smaller than those for the narrow-gap situation. 

The experimental results for the annulus with a very wide gap (7 = 0.304) are 
different from those discussed above (for 7 = 0.881 and 0.44) in that no transitions 
in the flow were observed until the flow became turbulent at Re = 4600. For 
Reynolds numbers below this value, neither torque measurements nor visualiza- 
tion studies indicated any flow transition. The transition to turbulence a t  
Re = 4600 may easily be observed using flow-visualization techniques and torque 
measurements. 
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5. Summary and conclusions 
Theoretical and experimental results regarding the flow in a spherical annulus 

bounded by a stationary outer sphere and a rotating inner sphere have been 
presented. Flow properties have been shown to be strongly dependent on the 
ratio of the radii of the two spherical surfaces and the Reynolds number. 

The torque needed to rotate the inner sphere at  a constant angular velocity is 
a function of the radius ratio and Reynolds number. For small Reynolds numbers 
the torque was found to agree very well with the theoretical Stokes-flow solution. 
In  these cases the secondary flows are negligible, fluid inertia is small and the 
torque is proportional to the fluid viscosity and angular velocity (the dimension- 
less torque is independent of the Reynolds number). 

For moderate Reynolds numbers the torque is a complex function of the radius 
ratio and Reynolds number. The effect of secondary flows (non-negligible inertia 
effects) is to increase the torque above that given by the Stokes-flow approxima- 
tion (the dimensionless torque is an increasing function of the Reynolds number 
for moderate Reynolds numbers). 

For large Reynolds numbers the flow assumes a boundary-layer character. 
For these cases the torque is essentially independent of the radius ratio and 
agrees very well with the results of boundary-layer theory for a rotating sphere 
in an unbounded fluid. 

The stability of spherical annulus flow is strongly dependent on the radius 
ratio; not only quantitatively, but qualitatively as well. In  particular, the transi- 
tions involved in the wide-gap situation do not involve the Taylor-type vortices 
of the narrow-gap case and are much less drastic and more difficult to detect. 
The instability is initiated as a sublinear one near the critical value of the energy 
theory. For the case of a very wide gap, transitions (except for the transition to 
turbulence), if present at  all, were not detected. 
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FIGURE 5. Basic flow as indicated by dye streaks for 9 = 0.44 and Re w 20. Inner sphere 
rotating; outer sphere stationary. (u)-(d) are in time sequence. 
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